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Abstract

Concept-based methods attempt to interpret existing neural networks or to design
inherently interpretable models by exploiting human-comprehensible concepts. In
the current talk, I will present few significant examples of such methods, discussing
their commonalities, their underlying assumptions, and their applications. More in
detail, I will focus on the semantic alignment of neural directions and visual concepts
in CNNs for computer vision. In this context, di�erent existing approaches might be
understood in terms of a unified general framework. Furthermore, I will show the
impact of acknowledging semantic relations on such framework. Finally, the talk
discusses the main issues a�ecting concept-based methods and hints to possible
research strategies to tackle them.
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Motivation

Figure 1: An Artificial Neural Network f is composed of a set of neural units U which are
displaced into consecutive and interconnected layers.
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Function and Concept
Frege (1891)

Figure 2: Gottlob Frege

“We thus see how closely that which is
called a concept in logic is connected with
what we call a function. Indeed, we may say
at once: a concept is a function whose value
is always a truth-value.”

Ic : W → {T,F} (1)

Ec = {o ∈ W : Ic(o)} (2)
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Concept-Based Methods

Posthoc analysis:
• Latent Object Detectors (Zhou, Khosla,

et al. 2014)
• Feature Visualization (Olah,

Mordvintsev, and Schubert 2017)
• Network Dissection (Zhou, Bau, et al.

2019)
• TCAV (Kim et al. 2018)
• CaCe (Goyal et al. 2020)
• Interpretable Basis Decomposition

(Zhou, Sun, et al. 2018)
• Net2Vec (Fong and Vedaldi 2018)
• ConceptSHAP (Yeh et al. 2020)

Inherently interpretable:
• Concept Bottleneck Models (Koh et al.

2020)
• Debiased CBMs (Bahadori and

Heckerman 2021)
• Graph CBMs for algorithmic reasoning

(Georgiev et al. 2021)
• ProtoPNet (C. Chen et al. 2019)
• Concept Whitening (Z. Chen, Bei, and

Rudin 2020)
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Network Dissection
Bau et al. (2020)

(a) x ∈ X

(b) Lc(x) (c) Mu(x)

Figure 3: Decomposition of an image example x for a specific concept c and a given unit u
according to the Network Dissection approach.
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Network Dissection
Bau et al. (2020)

IoU(u, c) =

∑
x∈X |Mu(x) ∧ Lc(x)|∑
x∈X |Mu(x) ∨ Lc(x)|

(3)

6



Concept Activation Vectors (CAVs)
Kim et al. (2018)

Figure 4: Schema of the learning procedure for a Concept Activation Vector.
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Testing with CAVs (TCAV)
Kim et al. (2018)

SC,k,l(x) = lim
ε→0

hl,k(fl(x) + εvl
C)− hl,k(fl(x))

ε

= ∇hl,k(fl(x)) · vl
C

(4)

TCAVC,k,l =
|{x ∈ Xk : SC,k,l(x) > 0}|

|Xk|
(5)
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Schematic representation

Figure 5: Overview of the proposed methodology. A set of neural directions D is semantically
aligned with an ontology O through a pixel-level annotated dataset X, whose labels are in a
two-way relationship with the ontology concepts C. Semantic relations S enable the retrieval of
subgraphs composed of architecturally connected and semantically related directions.
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Higher-Level Concepts

animal.n.01

carnivore.n.01

canine.n.02

dog.n.01

feline.n.01

cat.n.01

(a) Induced taxonomy (b) x ∈ X (c) Lc(x)

Figure 6: Given the taxonomy induced by the specialisation relation, it is possible to analyze
concept masks not directly annotated in the input.
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Neural Directions

A neural direction
d = (l, v) (6)

identifies a specific vector direction v in the output space of the l-th layer of the
network.

For a given input x, its ouput is given by the dot-product

Ad(x) = f l(x) · v. (7)

≈ essentially a CAV!

When ∃i.v = e(i), the direction refers to the i-th unit of the l-th layer.

≈ as in NetDissect!

12



Neural Directions

A neural direction
d = (l, v) (6)

identifies a specific vector direction v in the output space of the l-th layer of the
network. For a given input x, its ouput is given by the dot-product

Ad(x) = f l(x) · v. (7)

≈ essentially a CAV!

When ∃i.v = e(i), the direction refers to the i-th unit of the l-th layer.

≈ as in NetDissect!

12



Neural Directions

A neural direction
d = (l, v) (6)

identifies a specific vector direction v in the output space of the l-th layer of the
network. For a given input x, its ouput is given by the dot-product

Ad(x) = f l(x) · v. (7)

≈ essentially a CAV!

When ∃i.v = e(i), the direction refers to the i-th unit of the l-th layer.

≈ as in NetDissect!

12



Neural Directions

A neural direction
d = (l, v) (6)

identifies a specific vector direction v in the output space of the l-th layer of the
network. For a given input x, its ouput is given by the dot-product

Ad(x) = f l(x) · v. (7)

≈ essentially a CAV!

When ∃i.v = e(i), the direction refers to the i-th unit of the l-th layer.

≈ as in NetDissect!

12



Neural Directions

A neural direction
d = (l, v) (6)

identifies a specific vector direction v in the output space of the l-th layer of the
network. For a given input x, its ouput is given by the dot-product

Ad(x) = f l(x) · v. (7)

≈ essentially a CAV!

When ∃i.v = e(i), the direction refers to the i-th unit of the l-th layer.

≈ as in NetDissect!

12



Semantic Alignment

Given a set of neural directions D and an ontology O = (C, S), the semantic alignment
is estimated by an arbitrary performance metric

σ : D× C→ [0, 1] (8)

over the classification boundary defined by the direction.
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Candidate σ

The Jaccard similarity, also known as Intersection over Union (IoU),

σIoU(d, c) =

∑
x∈X |Md(x) ∧ Lc(x)|∑
x∈X |Md(x) ∨ Lc(x)|

, (9)

or the Sørensen–Dice coe�icient, also known as F1 score,

σF1(d, c) =

∑
x∈X 2|Mu(x) ∧ Lc(x)|∑
x∈X |Mu(x)|+ |Lc(x)|

, (10)

consitute insightful measures of semantic alignment.
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Acknowledging Polysemanticity

Figure 7: Ideal interaction between visual
concepts C and neural directions D.

σL(d, c) = L(Yc = 1 | Zd = 1)

=

∑
x |Lc(x) ∧Md(x)|∑

x |Lc(x)|
(11)

= recall
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Unit-alignment comparison

(a) Examples with maximal
activations

Synset σ(u, c)

hovel.n.01 0.021
roof.n.03 0.025
building.n.01 0.031
shelter.n.01 0.035
house.n.01 0.098

(b) IoU(u, c)

Synset σ(u, c)

circus_tent.n.01 0.401
greenhouse.n.01 0.403
shed.n.01 0.469
pavilion.n.01 0.568
bandstand.n.01 0.631

(c) L(c | u)

Figure 8: Semantic alignment of unit 196 in the last residual block of ResNet-18.
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Network Alignment Ψ

We define the set of τ -su�iciently aligned direction-concept pairs as

Ψτ = {(d, c) | σ(d, c) ≥ τ} ⊆ D× C. (12)

Alignment-pairs can be connected in a directed graph

G = (Ψ,E) (13)

where an edge between two pairs exists if and only if directions are architecturally
dependent and concepts are semantically related.
By extracting each non-trivial connected component, we obtain a set

T = {t | t ⊆ Ψ, |t| > 1,G[t] is connected}, (14)

where each t ∈ T is a semantically related and architecturally connected neural circuit.
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Circuits analysis

Figure 9: The ontological structure of visual concepts enables the retrieval of architecturally
connected and semantically related directions.

18



Circuits analysis

Figure 9: The ontological structure of visual concepts enables the retrieval of architecturally
connected and semantically related directions.

18



Circuits analysis

Figure 9: The ontological structure of visual concepts enables the retrieval of architecturally
connected and semantically related directions.

18



Circuit 16

passage.n.03

conduit.n.01

flue.n.03

chimney.n.01

aqueduct.n.01

passageway.n.01

tunnel.n.01 arcade.n.01

Figure 10: Hierarchy of WordNet synsets within Circuits 16 from AlexNet/Broden pretrained on
Places365.
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Circuit 16

Figure 11: Accuracy drop histogram for Circuit
16 from AlexNet/Broden pretrained on
Places365.

k Description Drop
96 /c/clothing_store -0.05

121 /d/dining_room -0.05
159 /g/gazebo/exterior -0.06

91 /c/church/outdoor -0.06
12 /a/arch -0.08

260 /p/pavilion -0.09
288 /r/river -0.1

66 /b/bridge -0.11
347 /v/viaduct -0.19

10 /a/aqueduct -0.23

Table 1: Class accuracy drop for Circuit 16 from
AlexNet/Broden pretrained on Places365.
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Implementation

https://github.com/rmassidda/bisturi
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The network has learned concept c.

...well, so?
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The network has learned is able to represent concept c.

...well, so?
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Issues
Discussion points

• Intuitive approach, without formal statements.
• Do we really want symbols to get in through the backdoor?

(Fodor and Pylyshyn 1988; Chalmers 1990)
• How much transformations to justify the previous "conceptual statement"?
• Massive need of label data w/o self-supervision.
• “Explanations must be wrong.” (Rudin 2019)

If the explanation was completely faithful to what the original model computes,
the explanation would equal the original model, and one would not need the
original model in the first place, only the explanation.
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